Unsupervised Learning

A collection of 3 posts
효율적인 Anomaly Detection 방법[f-AnoGAN vs MemAE]
이상 탐지

효율적인 Anomaly Detection 방법[f-AnoGAN vs MemAE]

-------------------------------------------------------------------------------- Unsupervised Learning 방법으로 GAN을 이용한 Anomaly Detection 방법 중 Encoder을 이용한 f-AnoGAN 방법이 있습니다. 이 방법은 효율적으로 정상화 다른 결함 부분을 검출 하지만 미세한 결함은 제대로 검출하기 힘들다는 한계가 있습니다. 본 글에서는 f-AnoGAN의 특징과 그 단점에 대해 간략히 소개하고 그 해결책에 대한 내용을 간단하게 정리해보기 위한 글 입니다. 비교할
4 min read
[F-AnoGAN] Fast Unsupervised Anomaly Detection with GAN
논문리뷰

[F-AnoGAN] Fast Unsupervised Anomaly Detection with GAN

-------------------------------------------------------------------------------- * GAN을 사용한 최초 Anomaly Detection 방법인 AnoGAN의 후속 모델로 Encoder 모델을 사용하여 더 빠르게 \( G(x)\)와 \( x\)를 matching 시켜 Anomaly Detection 하는 방법입니다. * Paper 원문: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks [https://www.sciencedirect.com/science/article/abs/pii/S1361841518302640] * f-AnoGAN tutorial code(Pytorch)
9 min read
[AnoGAN]Unsupervised Anomaly Detection with GAN
GAN

[AnoGAN]Unsupervised Anomaly Detection with GAN

-------------------------------------------------------------------------------- * 기존 Anomaly Detection은 Supervised Learning으로 접근했지만 AnoGAN은 GAN을 이용한 Unsupervised Learning 방법으로 접근하여 Anomaly Detection하는 논문입니다. * Paper 원문: [Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery [https://arxiv.org/abs/1703.05921]] -------------------------------------------------------------------------------- Introduction GAN이란? GAN 학습 과정은 Discriminator가 Real/Fa
9 min read