Tagged

PyTorch

A collection of 5 posts

[GAN 시리즈][StyleGAN] A Style-Based Generator Architecture for Generative Adversarial Networks -2편
논문 리뷰

[GAN 시리즈][StyleGAN] A Style-Based Generator Architecture for Generative Adversarial Networks -2편

StyleGAN은 PGGAN 구조에서 Style transfer 개념을 적용하여 generator architetcture를 재구성 한 논문입니다. 그로 인하여 PGGAN에서 불가능 했던 style을 scale-specific control이 가능하게 되었습니다. Paper 원문: StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks StyleGAN official code(Tensorflow): https://github.com/NVlabs/stylegan 본 포스팅은 StyleGAN 2편으로 StyleGAN 1편을 읽고 오시면

[GAN 시리즈][StyleGAN] A Style-Based Generator Architecture for Generative Adversarial Networks -1편
논문리뷰

[GAN 시리즈][StyleGAN] A Style-Based Generator Architecture for Generative Adversarial Networks -1편

StyleGAN은 PGGAN 구조에서 Style transfer 개념을 적용하여 generator architetcture를 재구성 한 논문입니다. 그로 인하여 PGGAN에서 불가능 했던 style을 scale-specific control이 가능하게 되었습니다. Paper 원문: StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks StyleGAN official code(Tensorflow): https://github.com/NVlabs/stylegan 1. Abstract [제안한 네트워크] Style transfer 문헌에서 차용한

[F-AnoGAN] Fast Unsupervised Anomaly Detection with GAN
논문리뷰

[F-AnoGAN] Fast Unsupervised Anomaly Detection with GAN

GAN을 사용한 최초 Anomaly Detection 방법인 AnoGAN의 후속 모델로 Encoder 모델을 사용하여 더 빠르게 \( G(x)\)와 \( x\)를 matching 시켜 Anomaly Detection 하는 방법입니다. Paper 원문: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks f-AnoGAN tutorial code(Pytorch): https://github.com/mulkong/f-AnoGAN_with_Pytorch 1. Abstract [문제점]

PyTorch 데이터로더 이해하기 - Part 2
PyTorch

PyTorch 데이터로더 이해하기 - Part 2

이전 Part 1 에서 PyTorch 를 활용하여 나만의 DataLoader 를 작성하는 가장 기본적인 방법들에 대해 알아 보았다면, 이번 포스트에서는 그것들을 응용한 나만의 DataLoader 를 커스터마이징한 사례에 대해 소개하고자 한다. SimCLR최근에 self-supervised learning 과 관련하여 몇가지 논문들이 주목받고 있는데, 2020년 상반기에 업로드된 SimCLR 이 다른 여러 self-supervised methods 가운데 좋은 성능을

PyTorch 데이터로더 이해하기 - Part 1
PyTorch

PyTorch 데이터로더 이해하기 - Part 1

PyTorch 를 업무에 활용하면서 다양한 종류의 데이터셋을 활용한 프로젝트를 많이 경험하고 있지만, 텐서플로우나 케라스에 비해 PyTorch 는 사용하는 사람이 많이 없어 의지할 구석이 그리 많지 않은 듯 하다. 몇몇 분들과 얘기를 하다보면 그 중에서도 꽤나 많은 비중을 차지하는 이슈가 바로 DataLoader 를 작성하는 부분에서 나오는 것 같다. 정형 데이터 같은